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Abstract—Dehydrophenylalanine-derived small peptides can be preorganized in a 310 helical structure which is transformed into
a �-turn mimic during a ring-closing metathesis cyclization. © 2002 Elsevier Science Ltd. All rights reserved.

Recent developments in the domain of drug-discovery
have focused attention on the synthesis of small-con-
strained mimics of bioactive conformations of potent
therapeutic molecules.1 It is very important for a pep-
tide molecule to retain its conformational features in
vivo to bind strongly to the target. Thus elements of
constraint (local or global) in a molecule can lock it
into a particular conformation, which may mimic the
exact bioactive conformation. Local constraints in
terms of side-chain modifications2 in the amino acids,
incorporation of protein secondary structures like
turns, helices, etc., into the molecule and cyclization3 as
part of global constraints are commonly practiced.

These molecules can also be very useful as pharmaceu-
tical probes towards various proteases. The dehy-

drophenylalanine (�Phe) residue as a constrained
phenylalanine mimic has gained much importance in
particular because of its turn inducing as well as helix-
forming propensity.4 It was also observed that the �Phe
residue when present as part of a peptide renders
stability towards proteolytic degradation. The sp2-C� in
the dehydro residue results in specific � and � angles
which facilitate �-turn formation capability of this
residue. In an ongoing project in our laboratory5 on the
development of potent HIV-protease inhibitors,6 we
developed a strategy to synthesize �Phe-derived small
cyclic �-turn mimics. Recently,7 we have shown that in
a small peptide the presence of a �Phe residue at the
C-terminal (I) or N-terminal (II) of L-proline can con-
strain the molecule to adopt a �-turn (Fig. 1). We have
shown that such preorganization into a �-turn in the

Figure 1. Dehydrophenylalanine-derived �-turn mimics.
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molecule can bring the terminal olefin bonds in suffi-
ciently close proximity to undergo a facile ring-closing
metathesis (RCM)5 cyclization. In this communication
we report the synthesis of a �Phe-containing small
cyclic �-turn mimic8 through a RCM reaction.

We synthesized tripeptide 6 having two terminal olefinic
bonds at the C- and N-termini with the aim of cyclizing
them by a RCM reaction. Accordingly, N-pent-4-enoyl-
L-proline 1 was used to resolve the racemic aziridine 2
as described earlier7 to get the optically pure dipeptide
3 in 41% yield (Scheme 1). We have recently proved the
stereochemistry of the stereogenic centers in the

aziridine to be 2S,3R.7 The compound 3 was then
subjected to a stereoselective conversion to the corre-
sponding �Phe-containing peptide 4 using our novel
Me3SiI/Et3N mediated methodology.7 Subsequently,
the peptide 4 was hydrolyzed (LiOH–MeOH/H2O) and
extended at its C-terminus with L-LeuOMe (ClCO2Bui/
Et3N)9 to afford the corresponding peptide 5. An alka-
line hydrolysis (LiOH–MeOH/H2O) of 5 and
subsequent coupling with allylamine (ClCO2Bui/Et3N)
afforded the peptide 6 in an overall yield of 68%
(Scheme 1). The solution 1H NMR data of compound
6 is presented in Table 1. The presence of two
intramolecular hydrogen bonds10 was revealed by sol-

Scheme 1. Synthesis of cyclic peptide 7 as a �-turn mimic.

Table 1. 1H chemical shifts (� in ppm), coupling constants (J in Hz) of 6 in CDCl3 at 500 MHz

Protons AllylPro �Phe Leu

7.62 (s)–NH 7.08 (t, J=5.5)7.17 (d, JNH–�H=8.2)
4.44 (t, J=6.8) 3.90 (m)–C�H 4.59 (ddd, J�H–�H=4.3, J�H–��H=10.4)

1.93 (m) 5.87 (tdd, J=5.3, 10.4, 17.1)C�H 2.22 (m) 7.40 (s)
1.70 (m) –C��H 2.22 (m)

5.22 (qd, J=1.6, 17.2)1.68 (m)–C�H 2.07 (m)
5.09 (qd, J=1.6, 10.4)2.07 (m) – –C��H

3.57 (dt, J=7.2, 9.8) –C�H 0.96 (d, J=6.3) –
3.62 (ddd, J=5.6, 7.2, 9.8)

C��H –– 0.95 (d, J=6.3) –
Others: 2.43–2.37 (m, 4H, 2CH2), 5.79 (tdd, J=6.2, 10.3, 17.2 Hz), 4.99 (qd, J=1.5, 17.2), 4.92 (qd, J=1.5, 10.3), 7.32–7.42 (m, 5H)
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vent titration studies. Titrating with DMSO-d6 in
CDCl3 showed that the variation of the chemical shift
of the allyl-NHb (<0.36 ppm) and Leu-NHa (<0.70
ppm) is very small when 33% v/v DMSO-d6 was added
to the CDCl3 solution. The appearance of the Leu NHa

(7.17 ppm) as well as allyl-NHb (7.08 ppm) at low field
in the proton spectrum confirms their participation in
H-bonding. The 1H NMR of 6 in CDCl3 solution
showed only one isomer with a trans imide bond pre-
ceding the proline residue, as shown by the cross peak
between the Pro�-Hd/pentenoyl-Hc in the NOESY spec-
trum. The appearances of NOE cross peaks between
He/Ha, Ha/Hj and He/Hj strongly indicates a ten-mem-
bered hydrogen bonding involving the leucine NHa and
the pentenoyl carbonyl in 6 (Fig. 2). The presence of
strong NOE peaks between Ha/Hb, Hb/Hj and Hi/Hb

along with the observation of the allyl-NHb being
hydrogen bonded (DMSO-d6 study), confirms the pres-
ence of a second �-turn in 6 (Fig. 2). Also the strong
ROE peak between the �Phe-�-Hf/leu NHa confirms
the Z-geometry of the double bond.

The 1H NMR studies thus clearly support the presence
of two consecutive �-turns, which suggests that the
acyclic peptide 6 is organized as a 310 helical structure.
Molecular dynamics simulation studies on 6 also show
the presence of a 310 helical structure in this peptide11

(Fig. 2). In a recent study from our laboratory12 we
have shown that peptides folded in a 310 helical struc-
ture undergo facile RCM cyclization leading to the
corresponding cyclic 310 helical structure. In order to
probe this we have subjected peptide 6 to RCM condi-
tions. To our gratification, when the tripeptide 6 was
subjected to Ru-carbene (Grubbs’ catalyst) catalyzed
RCM reactions,3,13 it indeed underwent a smooth

cyclization to afford the corresponding cyclic peptide 7
as an E-isomer in good yields (Scheme 1). In the
process of cyclization of 6, one new unnatural �-amino
acid, 6-aminohex-4-enoic acid (Aha) has been created
and 7 can be considered as a cyclic tetrapeptide with
two natural (Pro and Leu) and two unnatural (�Phe
and Aha) residues arranged in an alternating manner.
Also, being a cyclic peptide with a Pro-�Phe linkage, 7
can potentially belong to a new class of structural
analogues of HIV protease inhibitors. The solution 1H
NMR study on the cyclic peptide 7 revealed interesting
conformational properties. It was observed that after
cyclization the 310 helical structure in peptide 6 has
been transformed into a single cyclic �-turn mimic 7.
An almost equal abundance of both cis and trans
conformational isomers are observed in the DMSO-d6

medium. The low temperature coefficient (��/�T) for
the Aha-NHb chemical shifts (−2.4 ppb/K for the trans-
7 and −1.8 ppb/K for cis-7) indicates its participation in
intramolecular hydrogen bonding. The ROE cross
peaks between Ha/Hb, Hb/Hi, Ha/He confirms the pres-
ence of �-turn involving the �Phe/leu residue. The
energy minimized structures for both cis-7 and trans-7
show the presence of intramolecular hydrogen bonding
involving the proline carbonyl and the Aha-NHb (Fig.
2).

To ensure the role of the �Phe in the cyclization of 6,
we synthesized two analogous peptides 8 and 9 by
standard amide coupling procedures9 replacing the
�Phe with L-Phe and D-Phe (Fig. 3), respectively,
whose solution NMR did not show any well defined
structure. When subjected to RCM condition, peptide 8
did not undergo any cyclization thereby rendering a
strong support to our hypothesis.

Figure 2. Energy minimized structures and different NOEs observed in trans-6, cis-7 and trans-7.
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Figure 3. The dehydrophenylalanine residue has been replaced by L-Phe and D-Phe in 8 and 9 respectively.
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Academic Press: New York, 1985; (b) Farmer, P. S. In
Drug Design ; Ariens, E. J., Ed.; Academic: New York,
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Belvisi, L.; Bernardi, A.; Manzoni, L.; Potenza, D.; Sco-
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Am. Chem. Soc. 2001, 123, 5206–5212; (f) Feng, Y.;
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120, 10768; (g) Feng, Y.; Pattarawarapan, M.; Wang, Z.;
Burgess, K. J. Org. Chem. 1999, 64, 9175–9177; (h)
Burgess, W. L. Tetrahedron Lett. 1999, 40, 6527–6530; (i)
Zhang, A. J.; Khare, S.; Kuppan, G. D.; Linthicum, S.;
Burgess, K. Bioorg. Med. Chem. Lett. 2001, 11, 207–210.

9. Standard amide coupling procedure: To an ice-cold stirred
solution of N-pentenoyl proline acid (1 equiv.) in dry
dichloromethane (5 mL) was added triethylamine (1
equiv.) followed by isobutyl chloroformate (1 equiv.).
The resulting mixture was stirred vigorously for 5 min
and then XAA-leucine allyl amide (1 equiv.) was added
followed by 1 equiv. of triethylamine. It was stirred for 5
h. After that the reaction mixture was washed thoroughly

On the other hand peptide 9 was cyclized in a very poor
yield (5–10%). These results clearly indicate that the
close proximity of the terminal olefins, a prerequisite
for RCM cyclization, is missing in peptides 8 and 9.
Furthermore absence of the �-turn in 8 and 9, also
supports the role of the �Phe induced �-turn preorgani-
zation of 6 leading to the proximity of terminal alkenes
for a successful RCM reaction.

In conclusion, we have demonstrated that the �Phe
residue present in peptide 6 can invoke a 310 helical
structure which changes into a simple �-turn structure
after RCM cyclization. We are currently pursuing the
cyclization studies on the related helical structures.
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